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fneiratt evelam © Computer calculations have been made of how real-gas effects modify the conventional

one-dimensional equations for mass flow of air, nitrogen, oxygen, hydrogen, argon,
helium, and steam through a nozzle. The results indicate that for critical flow of air, at

Introduction

nNE of the difficulties in the conventional use of
critical-flow nozzles for metering the mass-flow of gases is the lack
of accurate one-dimensional flow relations that take into account
such “real-gas’’ effects as compressibility and specific-heat varia-
tions. Most published critical-flow equations apply to a perfect
gas. For this report, a perfect gas will be defined as one whose
specific heat is constant and independent of temperature and
pressure, and whose compressibility factor Z is constant. At
high pressures or low temperatures (for example, values of pressure
and temperature near the critical point) significant errors in mass-
flow-rate calculation can occur if the ideal-gas flow relations are
used. Ideal-gas flow relations are defined as those that apply toa
perfect gas.

References [1 to 3]! estimate the values of gaseous imperfections
for isentropic flow by use of the van der Waals and the Beattie-
Bridgeman state equations. Reference [4] is an experimental
check on the results of references [2 and 3]. An “effective
gamma’’ for the isentropic expansien of real gases is estimated in
reference [5]. Reference [6] presents a graphical method for
computing the mass-flow rate for real gases by means of the data
from reference [7].

In this paper, the mass-flow rates at the critical pressure ratio
of air, nitrogen, and oxygen are calculated with the compressibil-
ity and ideal-gas specific-heat data from reference [7]. These
mass-flow rates are also calculated for normal hydrogen by means
of the data from reference [8) and for steam by means of the state
equation in reference [9]. References [8 and 9] are the sources
for the compressibility data for normal hydrogen and steam in
reference [7). In addition, less exact calculations are performed
for all the above gases except steam with the Beattie-Bridgeman
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room temperature and 100 atmospheres pressure, real-gas effects of 3/,
) Stimilar magnitudes are found for the other gases.

PSR
equation of state and the specific-heat data of refer’ené[/ﬂ.
The Beattie-Bridgeman constants are from reference [10]. This
permits a check on the accuracy achievable by using the Beattie-
Bridgeman equation. In addition, the mass-flow rates of argon
and of helium are computed with the Beattie-Bridgeman equation.

For all gases except steam, the calculations are for tempera-
tures up to 700 deg R .and for pressures up to 100 atm. For
steam, the ranges are 1500 deg R and 300 atm.

Calculation Procedure

Equations for calculating the mass-flow rate will be derived for
two situations. One set will be derived for the situation where the
compressibility factor Z is given as a function of pressure and
temperature. The other set will be derived for the situation where
Z is given as a function of density and temperature. The only
other variable needed for these calculations is the ideal-gas specific
heat c,0, which is a function of temperature only. Both of these

methods are required due to the manner in which the data of

reference [7] are presented for different gases. The two.cases will
now be discussed. .

Casel: Z = Z(p, T).

This case applies to nitrogen and to oxygen. In reference [7},
the compresgibility factor is expressed as

Z(p, T) = L

pRT = l + BPP + Cpp, + DPP’

1

where B, C,, and D, are tabulated as functions of temperature.
For the purposes of these calculations, analytic expressions had
to be found to represent B, C,, and D,. This was done by fitting
temperature polynomials to the tabulated data. To cover the
required temperature range, different equations were needed over
different segments of the range. At places where two segments
met, it was required that the function and its first and second
derivatives be continuous. A temperature polynomial was also

Nomenclatare
A = Beattie-Bridgeman const ¢, = specific heat at constant pressure U = internal energy
a = Boattie-Bridgeman const ¢ = i1deal-gas specific heat at constant V = velocity
B = Beattie-Bridgeman const p r;iss 1;lre 4 at +ant volume Z = compressibility factor, p/pRT
.. . . = 0 _ .
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used &0 represent the normalized ideal-gas specific heat cpo/E, as
tabulated in reference [7].

The given values for the calculation are the inlet stagnation
pressure po, the inlet stagnation temperature Ty, and the Mach

L _f(ory _ 1
ar OpS_Z'*’RT

number at the nozzle throat M;. By assuming the gas to be per-
fect, an initial estimate of the nozzle-throat temperature 71 can
be made. The actual Mach number for this estimate is com-
puted as follows.

The differential entropy and enthalpy (reference [11]) are

aT 1 fop
ds = ¢, T + - o <OT) dp (2)
1
dH = TdS+;dp= —Vdv 3)

If the density p is eliminated from these equations by means of
equation (1), the result is

d8 ¢, dT ¥4 dp

R R ERE € N E
dH ¢, 27\ dp
g (22} 2L
E R’ <aT>, y (®)

Equations (4) and (5) were integrated along the path shownin the
following sketch:
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Equations (4) and (5) in integral form become
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where ¢ is the value of the constant-pressure specific heat at zero
pressure (also the ideal-gas specific heat), and
dp
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With the aid of a high-speed digital computer, equations (6)
and (7) were solved for p; and V. The computational accuracy
of py is one part in 108 (this does not include errors in input data).
To compute the Mach number, it is necessary to find an expres-
sion for the speed of sound . The expression that applies here is
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can be evaluated from the state
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equation, equation (1). The quantity (S;) is evaluated from
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equation (6). The resultant expression for — is
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The actual Mach number is then given by
v,
M, = o (10)

The temperature correction, AT, to be added to the nozzle-
throat temperature can be estimated by

aT
AT = —@AM

(11)
where dT/dM is estimated by the perfect gas relations, and AM
is the difference between the actual and desired Mach number.
By using the new nozzle-throat temperature, a new Mach number
is calculated. This process is repeated until the difference be-
tween the actual and desired Mach number is less than 1075,
The mass-flow rate per unit area is then given by

V) = Vs

Z RT (12)

and the ideal-gas mass-flow rate is

% ‘_y;l 1/
a7 @
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Equation (13) is somewhat arbitrary. The presence of Z; in-
sures that at a pressure ratio approaching unity, where the flow
becomes incompressible, the mass-flow-rate defect (the dif-
ference between equations (12) and (13)), becomes zero. For
both nitrogen and oxygen, ¥; was chosen to be 7/5. It is im-
portant to note that the choice of 7;is arbitrary. Another choice
would give different but equally valid results. The choice of 7/5
was based on the ideal model of a diatomic gas molecule with 5
degree of freedom.

The mass-flow rate for the critical-flow condition is that case in
which the nozzle-throat Mach number is unity. The pressure
ratio for the condition is the critical pressure ratio. The value for
the ideal mass-flow rate for the critical-flow condition is

v+l
Yi

2 2(yn—1D 14
14 critical.ideal = — ( )
(PP saen p\/zoRTo(v.-H)

Case II: Z = Z(p, T)

(pV)iden]

This case applies to the remaining gases and to the Beattie-
Bridgeman calculations. In all cases, the specific-heat data from
reference [7] were used. The state equation for air and hydrogen
is

= Z(p, T) = 1 + B,p + Cpp® + Dyp?

For air, the virial coefficients B,, C,, and D, are tabulated as
functions of temperature in reference [7]. Analytic expressions
for the virial coefficients were found in the same manner as those
in Case I. For hydrogen, the compressibility factor Z is tabu-
lated in reference [8] as a function of temperature and density.
For a constant temperature, cubic equations in density were fitted
to the compressibility data, which recovered the virial coef-
ficients B,, C,, and D,. Then, in a manner similar to that used
for air, analytic expressions for the temperature variations of the
virial coefficients were found.

(15)




The form of the Beattie-Bridgeman state equation used is
A C
Z(p, T) =1 B—— - —
(o T) + ( BT T3) p

ad CB CbB
+ (—bB“*‘ﬁ - F;)P’-I-—T';P’ (16)

The constants for the Beattie-Bridgeman state equation are from
reference [10].

For steam, the state equation is that given in reference [9].
This equation readily reduces to the form Z = Z(p, T).

The given quantities for these calculations are the inlet stagna-
tion pressure po, the inlet stagnation temperature T,, and the
nozzle-throat Mach number Mi. From the plenum conditions,
the inlet stagnation demsity py i8 calculated through the state
equation. By assuming the gas to be perfect, an initial estimate
of the nozzle-throat temperature 7; can be made. The Mach
number for this estimate is computed in the following manner.

bp) (OZ)
a? = (— = RT|Z —
op/s te op/r +

The differential entropy and internal energy (reference [11])

are:
aT 1 fop\ .
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If the pressure is eliminated through the state equation, the re-
sult is
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Equations (19) and (20) were integrated along the path indicated
in the following sketch:
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(The ideal-gas specific heat at constant volume equals the ideal-
gas specific heat at constant pressure reduced by the specific gas

constant R.) Equations (21) and (22) were solved for p; and for
the internal-energy change of the gas. The computational ac-
curacy of p; was one part in 108. The velocity of the gas in the
nozzle throat V, is given by

_ s
Vi = {212 [Q‘Lﬁﬁ‘ + ZoTo ~ zm]} (23)

To compute the Mach number, it is necessary to derive an ex-
pression for the speed of sound . The expression that applies
for this case is

e (2P) _ (%P op \ (oT
“ (ap)s (bP)T+ (aT)p(bP )s (24)

The quantities (g—z) and (b_p) can be evaluated from the
T »

oT
. . oT\ .
state equation, Z = Z(p, T'). The quantity g; is evaluated
8

from equation (21). The resulting expression for a?is

[Z +7 (:‘i)] (25)
AT T

The actual Mach number is given in equation (10). An itera-
tion procedure similar to that used in Case I is used until the
difference between the actual and desired Mach number is less
than 1075,

The mass-flow rate is given by _

(V) = V1 (26)

The nozzle throat pressure p; is calculated through the state
equation. The ideal-gas mass-flow rate is still given by equation
{(i3). The caicuiations for the critical-flow conditions are the
same as those given in Case I. For the ideal-gas computations,
the value of ; was chosen to be 7/5 for air and hydrogen, 5/3 for
helium and argon, and 4/3 forsteam. Asin Case I, the values of
¥; are arbitrary. Another value would give different but equally
valid results.  The choices of 5/3, 7/5, and 4/3 are based on the
ideal model of a monatomic, diatomic, and nonlinear triatomic
gas molecule with 3, 5, and 6 degree of freedom, respectively.

Results and Discussion

Figs. 1 to 7 show the mass-flow-rate defect as a function of the
pressure head divided by the stagnation pressure (ps — 21)/Pe-
The temperature for Figs. 1 to 6 is 550 deg R. The temperature
for steam, Fig. 7,18 1500 deg R. The difference between the de-
fects calculated from the virial equation and the Beattie-Bridge-
man state equation is indicated where applicable. For the cases
of helium and argon, only the Beattie-Bridgeman computations
were made. For the case of steam, only the state equation of
reference [9] was used.

It was found that when the difference between defects of the
two computations was less than 0.001 the compressibility factor
Z yielded by the virial equation was within 0.001 of the com-
pressibility factor yielded by the Beattie-Bridgeman equation.
Since the Beattie-Bridgeman calculation is more convenient, a
possible criterion of when it may be used might be that the com-
pressibility factor Z yielded by the virial equation be the same as
that yielded by the Beattie-Bridgeman computations to the de-
sired percentage accuracy. This presupposes that, in the ideal-gas
calculation, the more accurate value of Z, is used.

Lines of constant Mach number are also shown in Figs. 1 to 7.
With the exception of steam, Fig. 7, the defect is on the order of
0.002 at & Mach number of 0.2; the defect rises to a value between
0.01 and 0.04 for Mach 1 at a pressure of 100 atmospheres and
temperature of 550 deg R. For steam, Fig. 7, the defect is about
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—0.001 for a Mach number of 0.2 and about —0.015 for & Mach
number of unity.

Figs. 8 to 14 show the mass-flow-rate defect for critical flow in
nozzles as a function of inlet stagnation pressure p,. The pa-
rameter for these graphs is the inlet stagnation temperature T.
For this case, the ideal mass-flow rate is calculated on the basis of
the ideal critical-pressure ratio. It is observed that a defect of
about 1/4 percent for air occurs at a pressure of 10 atm. This de-
fect is of the same order as the accuracy of the discharge co-
efficient. Thus, even at 10 atm, the real-gas effects can be im-
portant.

The maximum defects range from about 0.02 for helium to
about 0.06 for nitrogen. These defects occur at the high-pressure,
low-temperature points.

For the cases of hydrogen and steam, Figs. 11 and 14, respec-
tively, significant defects exist even at very low pressures.
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These defects are not caused by variation in Z but are caused by
the variation of the ideal-gas specific heats. At low pressures, the
corrections would have been of a smaller magnitude if the actual
value of <; at stagnation conditions had been used rather than
the values y; = 7/5 for hydrogen and vy, = 4/3 for steam. For
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BISCUSSION )
R. M. Reimer®

This paper is very welcome to the field of high pressure ratio gas
flow measurement. Professor Arnberg’s suggestion to include the
compressibility factor Z-curves makes the paper a useful working
tool because one can calculate the value of the “ideal” flow rate
used in Figs. 1 to 14 in preparation for caleulation of the actual
flow rate without requiring other references. I prefer the use of
the ‘“perfect low pressure gas”’ flow rate for these figures to
eliminate this intermediate step. Although the author points
out the arbitrary definition of ideal gas flow in equation (13), and
explains the presence of Z, (which may not be unity), it is in-
consistent with his opening statement ‘“a perfect gas will be de-
fined as one whose specific heat is constant and independent of

" temperature and pressure and whose compressibility factor Z is

unity . . . Ideal gas flow relations are defined as those that apply
to a perfect gas.” I mention this mainly to caution those
readers who will not pay much attention to the calculation pro-
cedure.

Comparison of Fig. 8 with Fig. 4 in reference [6] shows that the
inclusion of Z,, in the ideal-gas critical flow-rate equation (13),
accounts for about half the mass-flow. defect between the con-
stant gamma perfect gas with unity compressibility factor and
the real gas. Hence if someone blindly uses Figs. 1 to 14 without
careful attention to equation (13), a significant error results.

Equation (9) can be written in other forms which I present for
informative purposes. Rewriting equation (9) as

where y is the Joule Thomson coefficient

RT! (02
#= 5 (o), @

we can write the denominator of equation (28) as

k=
,_2 (% _ZE_?L‘B_&(L‘_P’
z\op/)r ¢ T ~ ZR\T

Hence the last three denominator terms of equation (32) should
be equal to the last term of equation (9). ZE is the most sig-

Cs

(32)

nificant term.

Because of the significance of (0Z/0p)r and k, they should be
tabulated in publications along with other gas properties.

Author’s Closure

Mr. Reimer is quite correct when he warns the reader about

= kZRT

(28)

. ZRT
- e
I_E(D_Z) B z \oT/,
Z\p)r w2 e, oz d_r}
R C ML 1+T(M’),]p )

the denominator is recognized as the reciprocal of the isentropic
exponent k from the definition of the speed of sound. Using an
equation from reference [5]

Y _,_pP (o2
Pt Z(ap)r (29)

where 7 is the ratio of specific heats and k is the isentropic ex-
ponent, and the easily derived equation

3 Consulting Engineer-Testing Development Test Sub-Opera-
tion, Advanced Engine & Technology Department, General Electric
Company, Cincinnati, Ohio. Mem. ASME.

the use of Figs. 1 through 14 without paying careful attention to
equation (13). Again, I wish to iterate, the calculations of the
mass-low rate by means of equations (13) or (14) not only re-
quire knowledge of the mass-flow defect as given in Figs. 1
through 14, but also knowledge of the plenum compressibility
factor as given in Figs. 15 through 21.

I feel that a comment concerning accuracy is in order. The
computational uncertainty in calculating the mass-flow
rate by the methods in this paper is about 0.1 percent which is on
the order of the uncertainty of the physical factors involved in
this analysis.

Reprinted from September 1964
Journal of Basic Engineering
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the case of steam, the endpoint of the curve is indicated by a
small circle in those cases where a higher pressure would initiate
liquefaction at the nozzle throat.

By using Figs. 8 to 14, an estimate can be made of the mass-
flow-rate defect for pressure ratios other than critical. This
estimate, whose accuracy is on the order of 1/, percent, is

(po — p1)

Po
X (mass-flow defect for critical pressure ratio) (27)

mass-flow defect = 2.0

Values of compressibility factor Z as functions of pressure and
temperature for the various gases are plotted in Figs. 15 through
21.2 These values are given as an aid in computing the ideal-gas
mass-flow rate represented by equations (13) and (14).

? These graphs are included at the suggestion of B. T. Arnberg.
Values of Z for all gases but helium are from reference [7]; values for
helium are computed from the Beattie-Bridgeman constants given in
reference [10].
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Summary

Computer calculations of real-gas effects in critical-flow nozzles
have been made for air, nitrogen, oxygen, hydrogen, argon
helium, and steam. The results indicate that for critical flow of
air, at room temperature and 100 atm pressure, real-gas effects of
31/, percent exist. Similar magnitudes are found for the other
gases.

It was also found that the agreement between the mass-flow
rate defect calculated by the use of the Beattie-Bridgeman state
equation and that calculated by use of a more exact equation was
on the same order as the agreement between the compressibility
factor caleculated by use of the Beattie-Bridgeman state equation
and that calculated by use of the more exact state equation.
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